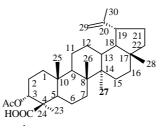
A New Lupane from the Resin of *Boswellia carterii*

Jin Yun ZHOU*, Rui CUI

Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

Abstract: A new lupane-type triterpene was isolated from the resin of *Boswellia carterii* Birdw. Based on the spectral methods, its structure was elucidated as lup-20(29)-ene-3 α -acetoxy-24-oic acid.

Keywords: Lupane, triterpenoid, Boswllia carterii.


Olibanum, a resin produced by *Boswellia carterii* Birdw which grows in Somalia and Ethiopia, is a traditional Chinese medicine. It invigorates the circulation of blood and relieves pain from injuries and tumors. In the previous chinical research, cembrane diterpenoids^{1,2}, ursane and oleanane triperpenoids³⁻⁸ were reported. A systematic study of the chemical constituents and antitumor activities of the resin led to the isolation of a new lup-type triterpene compound.

Compound 1, obtained as colorless needles, mp 271-273°C (MeOH), $[\alpha]_{D}^{18}$ +15.5 (c 0.12, MeOH), has the molecular formula $C_{32}H_{50}O_4$ according to the EIMS ion peak at m/z 498 and ¹³CNMR spectrum (**Table 1**). The ¹HNMR spectrum showed five methyl groups (δ 0.78, 0.79, 0.99, 1.06, 1.21) and one isopropenyl group (δ 1.68, s; δ 4.57 and 4.69 d, J = 2.0 Hz). In the HMBC spectrum, the H-29 correlated to C-19 and the H-19 correlated with C-30, C-20 and C-29, which indicated that C-19 bore an isopropenyl group. Hence compound 1 should be a lupane triterpenoid. An acetyl group ($\delta_{\rm H}$ 2.09, $\delta_{\rm C}$ 21.20 and 170.35) and a carboxy group ($\delta_{\rm C}$ 182.69) were also observed in the ¹H and ¹³CNMR spectra, respectively (**Table 1**). The EIMS of **1** exhibited important fragments at m/z 279, 219 (279-AcOH), 175(219-CO₂), 218, 203 and 189. This fragmentation pattern revealed that the acetoxy and carboxy groups might be located at rings A and B⁹. The locations of an acetoxy group at C-3 and a carboxy group at C-4 β were substantiated by the HMBC spectrum, in which the correlation of the H-3 to C-23 and the acetyl carbonyl carbon (δ 170.35), as well as that of H-23 with the carboxy carbon (δ 182.69) were observed. A small coupling constants (t, J = 3.0 Hz) between H-3 and H-2 pointed to equatorial disposition of H-3, hence the acetoxy group is axially oriented (α -face). A careful comparison of ¹³CNMR spectrum data of **1** with those of acetyl-11keto- β -boswellic acid¹⁰ showed that the structure of the two compounds in ring A are very similar and confirmed that in compound 1 the acetoxy and carboxy groups are located at C-3 α and C-4 β , respectively.

^{*} E-mail: jinyunzhou@imm.ac.cn

Jin Yun ZHOU et al.

The relative stereochemistry of 1 was elucidated by NOE spectroscopy. The NOE between the H-19 and the Me-28 suggested that the isopropenyl group is in the α -position. The acetoxy and carboxy groups located at C3 α and C4 β were further supported by the NOE of H-3 to Me-23 and H₂-2. Compound 1 was therefore assigned as lup-20(29)-ene-3 α -acetoxy-24-oic acid.

1

Table 1 1 H (500 Hz) and 13 CNMR (125 Hz) data of compound **1** (δ ppm, CDC_b)

С	δ_{H}	$\delta_{\rm C}$	С	δ_{H}	$\delta_{\rm C}$
1	1.09 (m), 1.49 (m)	34.38 t	17		43. 01 s
2	1.61 (m), 2.13 (m)	23.68 t	18	1.38 (m)	48.74 d
3	5.27 (t, J = 3.0)	73.27 d	19	2.38 (dt, J = 11.0, 6.0)	47.93 d
4		46.74 s	20		150.87 s
5	1.41 (m)	50.50 d	21	1.34 (m), 1.92 (m)	29.83 t
6	1.65 (m), 1.88 (m)	21.32 t	22	1.19 (m), 1.36 (m)	39.97 t
7	1.37 (m), 1.42 (m)	34.06 t	23	1.21 (s)	23.64 q
8		40.80 s	24		182.69 s
9	1.34 (m)	49.68 d	25	0.78 (s)	13.35 q
10		37.67 s	26	1.06 (s)	15.89 q
11	1.23 (m), 1.24 (m)	21.08 t	27	0.99 (s)	14.63 q
12	1.10 (m), 1.67 (m)	25.17 t	28	0.79 (s)	18.01 q
13	1.64 (m)	38.01 d	29	4.57, 4.69 (d, J = 2.0)	109.33 t
14		42.90 s	30	1.68 (s)	19.29 q
15	1.03 (m), 1.69 (m)	27.42 t	OCOCH ₃	2.09 (s)	21.20 q
16	1.37 (m), 1.46 (m)	35.54 t	OCOCH ₃		170.35 s

References

- S. Crosano, R. Nicoletti, Tetrahedron, 1967, 23, 1977. 1.
- 2. 3. E. Klein, H. Obermann, Tetrahedron Letters, 1978, 349
- A. Wisterstein, G. Stein, Z. Physiol. Chem., 1932, 208, 9.
- 4. S. Corsano, C. Iavarone, Gazz. Chim. Ital., 1964, 94, 328.
- G. G Allan, Chem. Ind., 1965, 1497. 5.
- R. Savoir, B. Tursch, S. Huneck, Bull. Soc. Chim. Belg., 1967, 76, 368. 6.
- 7. M. L. Forcellese, R. Nicoletti, U. Petrossi, Tetrahedron, 1972, 28, 325.
- E. Fattorusso, C. Santacroce, C. Xaasan, Phytochemistry, 1983, 22, 2868. 8.
- 9. P. Z. Chong, The Application of Mass spectroscopy in the Natural Organic Compounds, 1st ed., Science Press, Beijing, 1987, p.711.
- 10. B. H. Han, K. M. Kim, J. H. Park, M. H. Park, T. H. Kim, Y. N. Han, Arch. Pharm. Res., 1985, 8, 213.

Received 14 May, 2001